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Monte Carlo Simulations of Zeolites 
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Recent high-resolution nuclear magnetic resonance measurements have led to the accurate determination of the nearest-neighbor 
distributions of silicon among sites having 0-4 aluminum nearest neighbors as calculated by Monte Carlo simulations, for 
the 2-D square and the 3-D diamond lattices for different %A1 ratios. The empirical Lowenstein’s rule, which excludes 
the possibility of alumina as nearest neighbors, is imposed. The comparison between the theoretical and the experimental 
results (ZK4 and Faujasite) shows that while Lowenstein’s rule with nearest-neighbor A1-A1 interactions can explain the 
data qualitatively, to obtain quantitative agreement with the experiments the introduction of next-nearest-neighbor A1-A1 
interactions is necessary. Our numerical simulations predict that the aluminum distribution is a function of the zeolite synthesis 
temperature, which offers a unique way of controlling the atomic distributions in zeolites. 

Recent high-resolution nuclear magnetic resonance (NMR)’-’ 
measurements have led to the accurate determination of the 
nearest-neighbor distribution of silicon and aluminum atoms in 
zeolites. Tetrahedrally coordinated silicon may bond to zero, one, 
two, three, or four 0-A1 groups in the zeolite framework leading 
in each case to a different chemical shift. 

The purpose of this work is to calculate the distribution of the 
five type of chemically nonequivalent silicon for ZK4 and faujasites 
where the A1 atoms are randomly distributed, consistent with the 
constraint of Lowenstein’s rule8 which prohibits alumina-alumina 
nearest neighbors. These distributions were calculated by Monte 
Carlo simulations for the two-dimensiona (2-D) square and 
three-dimensional (3-D) diamond lattices for different Si:AI ratio. 

The structure of faujasite and ZK4 is very complicated. Like 
that of all zeolites, is built up of Si04 and A104 tetrahedra linked 
by corner sharing. In order to explain the N M R  data for the 
distribution of A1 around a Si, it is necessary to retain only the 
basic characteristics of the real structure in our model. Since the 
Faujasites, as well as the ZK4, have four nearest neighbors (nn) 
atoms, we will consider simple binary alloy models with Si and 
A1 as constituents. Since the number of nn is four, we used a 2-D 
square and a 3-D diamond lattice in our numerical simulations. 
From this study we hope to extract the basic underlying mech- 
anism for explaining the distributions of A1 around a Si. 

Once the model is chosen, there are basically two ways that 
one can attack the problem of calculating the distributions, either 
analytically or numerically. Analytically one usually has to make 
many simplifying approximations in order to obtain any results, 
while in numerical simulations one loses the beauty of an analytical 
form for the distributions. 

Analytical Method. Let us review briefly some ideas from 
probability theory that will be useful in understanding the results. 
Let P(Al,l/Si,O) = p be the conditional probability, that site 0 
is occupied by a Si and it has an A1 nearest neighbor a t  site 1. 
Similarly, let P(Al,l/Al,O) = q, then it is easy to show that 
P(Si,l/A1,0) = 1 - q and P(Si,l/Si,O) = 1 - p. Since we have 
a binary alloy with A1 and Si as the only two constituents it is 
easy to show that 

X,, = XsiP(Al,l/Si,O) + XA,P(Al,l/AI,O) (1) 

where XN and Xsi are the concentration of AI and Si, respectively. 
XAI + Xsi = 1. From eq 1 by defining R = Xsi/XA, we obtain 

P = (1 - q ) / R  (2) 
Note that given R and one of the conditional probabilities, all the 
other nn conditional probabilities are specified. To calculate the 
average number of AI around a given Si we define a quantity yi 
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which is 1 if the nn i is A1 and zero if the nn i is Si. We therefore 
have that 

4 

(AI) = c y i  = 4yi = 4P(Al,l/Si,O) = 4p = 4(1 - q)/R (3) 
I= 1 

where pi is the average value of y, .  Experimentally for most of 
the zeolites (Al) = 4/R which suggest that q = P(Al,l/Al,O) - 
0, Le., no alumina-alumina nearest neighbors. This is commonly 
referred to as Lowenstein’s ruleus Up to this point no approxi- 
mations have been made; however, if we are interested for the 
distributions P,, ( n  = 0, 1, 2, 3, 4) of n A1 around a given Si we 
need to make some approximations. Consider a site (call it 0) 
and its four neighbors (Figure 1). It is not necessarily true, for 
example, that 

P(A1,2/Si,O;AI,l) = P(A1,2/Si,O) (4) 

as there are many paths other than 1 - 0 - 2 along which the 
atom at  site 1 influences the atom at  site 2. However, as a first 
approximation, we will nevertheless assume that eq 4 and its 
generalizations are approximately valid, in order to obtain a closed 
system for equations for the distributions P,. Using a binomial 
probability distribution we can calculate the probabilities P, that 
a Si has n A1 and 4 - n Si nearest neighbors 

4! 
n!(4 - n ) .  

P, = - ,P” (1 - P),, (5) 

wherep = (1 - q ) / R  and q = P(Al,l/Al,O). This result was also 
obtained by Mikov~ky.~ By letting q = 0 (Lowenstein’s rule) one 
can compare the P i s  from eq 5 with the experimental results for 
faujasite, ZK4, and other zeolites. Although there is some 
agreement with the data, the overall agreement is not good. In 
some regions of R there are large differences between experiment 
and theory. Also since the results of eq 5 are the same for all 
the lattices that have four nn the role of dimensionality is probably 

(1) E. Lippmaa, M. Magi, A. Samoson, G. Englehardt, and A. R. Grim- 
mer, J .  Am. Chem. SOC., 102, 4889 (1980). 

(2) E. Lippmaa, M. Magi, A. Samoson, M. Tarmak, and G. Englehardt, 
J .  Am. Chem. SOC., 103,4992 (1981). 

(3) J. Klinowski, J. M. Thomas, C. A. Fyfe, and J. S. Hartman, J.  Phys. 
Chem., 85, 2590 (1981). 

(4) 0. Englehardt, U. Lohse, E. Lippmaa, M. Tarmak, and M. Magi, Z .  
Anorg. Allg. Chem., 482, 49 (1981). 

(5) J. M. Thomas, C. A. Fyfe, S.  Ramdas, J. Klinowski, and G. C. Gobbi, 
J.  Phys. Chem., 86, 3061 (1982). 

( 6 )  M. T. Melchior, D. E. W. Vaughan, and A. J. Jacobson, J.  Am. Chem. 
SOC., 104, 4859 (1982). 

(7) M. T. Melchior, R. H. Jarman, D. E. W. Vaughan, and A. J. Jacobson, 
to be published in the “Proceedings of Sixth International Conference of 
Zeolites”. 

(8) W. Lowenstein, Am. Mineral., 39, 92 (1954). 
(9) R. J. Mikovsky, Zeolites, 3, 90 (1983). 

0 1984 American Chemical Society 



Letters The Journal of Physical Chemistry, Vol. 88, No. 21, 1984 4899 

I - 
14 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

Figure 1. A site 0 and its four nearest neighbors. 

underestimated. Though it is possible to improve the theoretical 
results by going to next nearest neighbors (nnn), it is very difficult 
to obtain a self-consistent set of equations with all possible nnn 
probabilities. However, I will take a different approach here and 
carry out some Monte Carlo simulations for models of binary 
alloys to see if the probability distribution functions Pn can be 
improved. By using these numerical techniques, it is possible to 
include both nn and nnn interactions on any lattice structure of 
interest. Here we shall concentrate on  the 2-D square and 3-D 
diamond lattice since they are both fourfold coordinated. 

Numerical Simulations 
Nearest-Neighbor Alumina-Alumina Repulsion. We first 

study a simple model for the binary Si:Al alloys in which the only 
interaction is a strong alumina-alumina nearest-neighbor repulsion. 
The Hamiltonian for this system is simply 

n,n 

where JA1,AI < 0 is the repulsive nn A1-A1 interaction. Here n, 
= A1 or Si and anCAI is a Kronecker delta which is one if n, = A1 
and zero if ni = Si. The sum is over all nn pairs. We have taken 
the other two interactions JAl,si and = 0 for convenience. In 
order to satisfy Lowenstein’s rule we will always choose the AI-A1 
interaction, IJAI-AII much larger than KBT, the thermal energy. 
In the limit IJAI,AI! - m, there are no AI-A1 nearest neighbors 
in the final equilibnum configuration. It is easy to convince oneself 
that the number of AI-A1 nn NAI-Ai = 0, the other energies JAi-Si 
and have no effect on the final distribution. This is because, 
for NAI-AI = 0, the number of nearest neighbors NAI+ = p N  and 
Nsi-si = (1 - p ) N .  The distributions P,, then become independent 
of JAI-si and Jsi-si. This is equivalent with the argument we 
presented above that, given the ratio Si:Al and one of the con- 
ditional probabilities, then all the other nn conditional probabilities 
are specified. 

Since this limit is basically athermal, one might think that the 
distributions P, could be simple to calculate. One simple way, 
for instance, would be to use zero temperature Monte Carlo. This 
is a rather simple procedure where we start with a lattice and 
randomly fill up the lattice sizes with Si and A1 atoms in the 
desired concentration ratio R. Since some A1 will be nn of other 
Al, this random state will of course be far from the ground state. 
However, the energy can be lower by simply going through the 
lattice interchaning any pair of AI-Si atoms which reduce the 
number of A1-A1 nn pairs. One would hope to eventually find 
a good configuration with E = 0, i.e., NA+ = 0. While this works 
satisfactory for small X A I ,  the system gets hung for X A  1 0.40. 
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Figure 2. The distributions P, of n alumina (n = 0, 1, 2, 3, 4) around 
a given Si vs. the ratio of Si over AI, for the 2-D square lattice with only 
nearest neighbors (nn), the 3-D diamond lattice with only nn, and the 
3-D diamond with nn and nnn. In the last case KT/J<I-AI = 2.5. 

It cannot find a good configuration; instead it gets caught in a 
local metastable state with E > 0 which is not of interest here. 

One way to obtain better ground states was suggested by 
Kirkpatrick.lo The idea is simply to start at KBT > IJAI-AIl and 
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Figure 3. The distributions P, of n alumina around a given Si vs. the ratio 
of Si over AI, for the Z K 4  zeolite (solid symbols) and the Monte Carlo 
results for 3-D diamond lattice with nn and nnn (open symbols). 

slow cool the system with standard Monte Carlo finite temperature 
techniques. The final state of interest will of course be such that 
KBT << IJAI-AII but by slow cooling, the system will not get caught 
in a metastable state and can find good ground states with the 
proper probability distributions in this case with NAI-AI  = 0. 

Our Monte Carlo simulations are based on the simple algorithm 
first introduced by Metropolis et al." We randomly search the 
lattice and find an AI-Si nn pair and attemp to interchange them. 
If AE = Ef - Ei S 0, that is the interchange lowered the energy, 
the interchange is accepted and the configuration with the atoms 
interchanged is used as the starting point for the next step. For 
AE > 0, the new configuration is accepted based on the Boltzmann 
weight P(AE) = exp(-AE/KBT). If P(AE) 2 x, where x is a 
random number in the interval (0, 1) the interchange is accepted. 
If P(AE) S x,  the interchange is rejected and the original con- 
figuration is kept. By repeating this process many times, one 
simulates the thermal motion of the atoms in thermal contact with 
a heat bath at temperatures T. This particular choice of P(AE) 
ensures that we maintain detailed balance. For a complete review 
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Figure 4. The distribution P, of n alumina around a given Si vs. the ratio 
of Si over Al, for the faujasite zeolite (solid symbols) and the Monte 
Carlo results for 3-D diamond lattice with nn and nnn (open symbols). 
Here J',AJ-A~/JAI-A~ = 0.07 and KT/JLI-AI = 3.0. 

of Monte Carlo methods see Binder.lz 
Our simulations were done on lattices of size 100 X 100 for 

the 2-D square lattice and 20 X 20 X 20 for the 3-D diamond 
lattice. We typically slow cooled the system using about 500-1000 
Monte Carlo steps per atom (MCS), the larger number for the 
smaller values of R. As mentioned above, for large values of JAI-AI 
the final system is actually athermal. However, in order to find 
good equilibrium ground states, we slow cooled the system from 
KBT 1 IJN-AII to KBT << IJAI-AiI. The results of the calculation 
are shown in Figure 2. 

First we present our results for the 2-D square lattice with only 
nn intereactions. As we can see from Figure 2 there is qualitative 
agreement with the experiment for ZK4 which as we will discuss 
below agrees with the case of diamond lattice with nnn interactions. 
We attempted to obtain better agreement between this model and 
experiment by also studying the diamond lattice. However, as 
seen in Figure 2 the diamond lattice data for the probabilities P,, 
are actually closer to the square lattice results than that for the 
experimental data. This simply indicates that with only near- 

(12) K. Binder, Ed., "The Monte Carlo Method in Statistical Physics", 
Springer-Verlag, New York, 1978. 
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est-neighbor interactions the connectivity of the lattice does not 
play a very important role. We also considered temperatures T 
which were less than or comparable to IJAI-AII in order to see if 
it was possible to improve the results with nn interactions only. 
This allowed some violation of Lowenstein’s rule; we found that 
the results did not significantly improve the agreement with ex- 
periment. Instead, we have found it necessary to introduce ad- 
ditional intereactions which we will discuss in the next section. 

Next-Nearest-Neighbor Interactions. While it is possible to 
introduce many types of additional interactions, we have discussed 
above the fact that the introduction of nearest-neighbor JM+, or 
Jsisl interactions will have no effect on the distributions P,, when 
IJAI-AII > (KBT, JAI-Sl, Jsl-si). Therefore, we decided to include 
the possibility of next-nearest-neighbors interactions which will 
affect P,,, even when IJAI-AII >> KBT. The Hamiltonian is now 
written as 

= - J A I , A I ~ B ~ l , A I B ~ , , A I  - J’AI,AI~6n~,Albnl,AI (7) 
n,n nnn 

where J’Al-Al is the nnn A1-A1 interaction which we choose to be 
repulsive, Jh+, I 0. The second term in eq 7 is over all nnn pairs. 
Of course, we must have IJ’AI-AII << IJM+,I, in order not to violate 
Lowenstein’s rule. Now the model has two parameter JN-N/ Jh-M 
and KBT/Jh-M. For temperatures in the regime IJh-MI << KBT 
<< IJAi-AII, the nnn interactions are irrelevant and we obtain the 
results discussed above for nn interactions only. For lower tem- 
peratures, Jh-AI  becomes important and P, is changed. For KBT 
5 IJ<l-AII, then we find Lowenstein’s rule is always obeyed for 
J’AI-A1/JAI-AI I 0.05. This can be considered as an asymptotic 
regime. Here, we will consider the final temperature T as the 
formation of the zeolites and it will affect the final distributions 
P,,. As in the nn case above, we always start our simulation at  
high temperature and slow cool to the final temperature in order 
to obtain the lowest free energy state. 

We found it not possible to obtain results for all the P i s  that 
agree quantitatively with experiments for the 2-D square lattice, 
even with the two parameters. However, we were more successful 
for the diamond lattice, as shown in Figures 3 and 4. We obtained 
the results shown in Figure 3 for any J<~-A~/JAI-AI  5 0.05, Le., 
in the asymptotic regime and temperature KBT/Jh-a = 2.5. The 
agreement between the numerical simulations of the 3-D diamond 
lattice and the experimental results for ZK4’ is exceptional for 
all the probabilities PH (see Figure 3). Note that if we stay in 
the asymptotic regime, the only parameter that we have in our 
problem is KBT/IJh-Al, i.e., the ratio of the formation temperature 
T of the zeolite over the strength the nnn interaction. We found 
that it was very difficult to fit equally well the faujasite data by 

only changing the parameter KBT/IJ’M-MI. However, by changing 
the other parameter J’AI-AI/JAl-Al we could manage to fit the 
faujasite data as good as that for ZK4. In particular, we choose 
the parameter J’AI-AI/JAI-AI = 0.07 and KBT/lJ’Ai-All = 3;O for 
the faujasite case. For J’Ai-AIIJAi-AI = 0.07 we have a 1-3% 
violation of the Lowenstein rule in the whole R region. This 
violation is very difficult to see experimentally. The Tesults for 
ihe faujasite case are shown in Figure 4. The agreenient between 
numerical work (open symbols) and experimental work on fau- 
j8sites7 (solid points) is again impressive. We want to emphasize 
the point that we only have one parameter ( K T / J h - M )  ,in the ZK4 
case and two (kT /J<I -AI ,  J<I-AI/JA~-AJ in the faujgsitk ad8 can 
fit all five possibilities P, ( n  = 0,  1, 2, 3, 4) in the whole R region 
reasonably well. Therefore we believe that although we are using 
the diamond lattice instead of the real lattices for ZK4 and 
Faujasite zeolites, the underlying mechanism is the introduction 
of the nnn interactions. If we were to do the Monte Carlo sim- 
ulations for the real lattices we believe that the experimental data 
could also be fitted equally well, the only difference will be the 
value of the parameter K B T / J ~ I - A I .  

Conclusions 
We have performed numerical simulations on the 2-D square 

lattice a&d 3-D diamond lattice with nearest-neighbor and 
next-nearest-neighbors A1-A1 interactions, in order to determine 
aluminum and silicon distributions in zeolites. Althodgh our 
numerical simulations were done not on the real ZK4 or Faujasite 
structure, we believe that the diamond lattice with its underlying 
connectivity represents very well, as our results suggest, the real 
structures. We find that Lowenstein’s rule with nearbt-neighbor 
Ai-AI interaction is sufficient to qualitatively explain the ex- 
perimental data on the distributions P,, of n aluminsi around a given 
Si. To get a quantitative agreement with experimental data, the 
introduction of nnn A1-A1 in the diamond lattice only is also 
necessary. Our simulations, for the first time, suggest that the 
distributions P,, are functions of the zeolite synthesis temperature. 
It is also predicted that the temperature dependence of P, for ZK4 
and Faujasite zeolites are different. It is very interesting to check 
experimentally these last two predictions of the numerical simu- 
lations. In particular, it is possible to form zeolites in higher 
temperatures and therefore offer a unique way of controlling the 
atomic distributions of zeolites and therefore control their catalytic 
behavior. 
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